Specifically targeting angiopoietin-2 inhibits angiogenesis, Tie2-expressing monocyte infiltration, and tumor growth.
نویسندگان
چکیده
PURPOSE Angiopoietin-1 (Ang1) plays a key role in maintaining stable vasculature, whereas in a tumor Ang2 antagonizes Ang1's function and promotes the initiation of the angiogenic switch. Specifically targeting Ang2 is a promising anticancer strategy. Here we describe the development and characterization of a new class of biotherapeutics referred to as CovX-Bodies, which are created by chemical fusion of a peptide and a carrier antibody scaffold. EXPERIMENTAL DESIGN Various linker tethering sites on peptides were examined for their effect on CovX-Body in vitro potency and pharmacokinetics. Ang2 CovX-Bodies with low nmol/L IC(50)s and significantly improved pharmacokinetics were tested in tumor xenograft studies alone or in combination with standard of care agents. Tumor samples were analyzed for target engagement, via Ang2 protein level, CD31-positive tumor vasculature, and Tie2 expressing monocyte penetration. RESULTS Bivalent Ang2 CovX-Bodies selectively block the Ang2-Tie2 interaction (IC(50) < 1 nmol/L) with dramatically improved pharmacokinetics (T(½) > 100 hours). Using a staged Colo-205 xenograft model, significant tumor growth inhibition (TGI) was observed (40%-63%, P < 0.01). Ang2 protein levels were reduced by approximately 50% inside tumors (P < 0.01), whereas tumor microvessel density (P < 0.01) and intratumor proangiogenic Tie2(+)CD11b(+) cells (P < 0.05) were significantly reduced. When combined with sunitinib, sorafenib, bevacizumab, irinotecan, or docetaxel, Ang2 CovX-Bodies produced even greater efficacy (∼80% TGI, P < 0.01). CONCLUSION CovX-Bodies provide an elegant solution to overcome the pharmacokinetic-pharmacodynamic problems of peptides. Long-acting Ang2 specific CovX-Bodies will be useful as single agents and in combination with standard-of-care agents.
منابع مشابه
Cancer Therapy: Preclinical Specifically Targeting Angiopoietin-2 Inhibits Angiogenesis, Tie2-Expressing Monocyte Infiltration, and Tumor Growth
Purpose: Angiopoietin-1 (Ang1) plays a key role in maintaining stable vasculature, whereas in a tumor Ang2 antagonizes Ang1’s function and promotes the initiation of the angiogenic switch. Specifically targeting Ang2 is a promising anticancer strategy. Here we describe the development and characterization of a new class of biotherapeutics referred to as CovX-Bodies, which are created by chemica...
متن کاملIdentification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer.
Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes di...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer
Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes di...
متن کاملThe Selective Tie2 Inhibitor Rebastinib Blocks Recruitment and Function of Tie2Hi Macrophages in Breast Cancer and Pancreatic Neuroendocrine Tumors.
Tumor-infiltrating myeloid cells promote tumor progression by mediating angiogenesis, tumor cell intravasation, and metastasis, which can offset the effects of chemotherapy, radiation, and antiangiogenic therapy. Here, we show that the kinase switch control inhibitor rebastinib inhibits Tie2, a tyrosine kinase receptor expressed on endothelial cells and protumoral Tie2-expressing macrophages in...
متن کاملMathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment
BACKGROUND Immuno-oncotherapy has emerged as a promising means to target cancer. In particular, therapeutic manipulation of tumor-associated macrophages holds promise due to their various and sometimes opposing roles in tumor progression. It is established that M1-type macrophages suppress tumor progression while M2-types support it. Recently, Tie2-expressing macrophages (TEM) have been identif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2011